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I.  INTRODUCTION 

A.  Phenomenology 

The critical temperature of a binary liquid (a twc- 

component system) is the temperature above which the liquid 

exists in equilibrium as a homogeneous mixture of the two 

components in any specified concentration .  When the liquid 

having the critical concentration of each component Is cooled 

below the critical temperature it begins to form two phases, 

separated by a well defined meniscus. 

The equilibrium state » f the two phases can be described 

by the temperature, pressure, and chemical potsntial of each 

component.  However, it is more convenient to take the 

pressure P, temperature T, ad concentration c, as independent 

variables.  Near the critical point the equilibrium cnrve 

has the form shown in Fig. 1.  Points within the shaded region 

represent those states in which phase separation takes place; 

the concentrations of the two phases are determined by the 

intersections of the curve with the horizontal line represent- 

ing the temperature or pressure of the system.  Points outside 

the shaded region represent states in which the system exists 

as a single phase in equilibrium.  Near the critical point 

there are states for which the two phases can be in equilib- 

rium with arbitrarily close values of the concentration, c 

and c -I- dc.  If y is the chemical potential of one of the 

components, then the equilibrium condition demands that 
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{inT=o- (1) 

It can be shown  that the equal time autocorrelation 
Otf 

function of the concentration fluctuations is proportional 

r"1 
'3c' to (a )  *  Therefore, the concentration fluctuations tend 

to have very large amplitudes near the critical point.  If 

we consider the concentration as a local variable, which can 

vary in space and time, then it is convenient to define the 

order parameter s(r,t), which in this case is the concentra- 

tion fluctuation of one component about the equilibrium 

value: 

SC^t) * Ccr.t) - <C> (2) 

where c(r,t) is the concentration at space-time point (r",t), 

and <c> is the equilibrium, or ensemble average value of the 

concentration. 

Light scattering measurements on binary liquids exhibit 

2 
the phenomena known as critical opalescence , and critical 

3 
slowing down .  Critical opalescence refers to the abnormally 

large amount of light scattering that occurs In the critical 

region.  This is caused by the large regions of inhomogenelty 

that exist in the liquid.  The size of these regions is 

characterized by the correlation length £.  At temperatures 

far from the critical temperature T , the correlation length 

is very small, and of the order of magnitude of the molecular 

sices.  However, near T , the correlation length becomes very 

§l^^^gUl^il^mmmämm^M »V&m^i -Si-^tai. ■j^^yitvv.^Ä&iS^iy^sl 



HOLTR 72-208 

large, typically in the range of wavelengths of visible 

light.  These large regions of inhonogeneity then act as 

scattering centers for incoming plane waves of light, and 

the liquid acquires a bluish tinge, characteristic of 

Rayleigh scattering, and then becomes murky, as it starts to 

separate into two phases. 

Critical slowing down refers to the abnormally long life- 

times of the concentration fluctuations.  This phenomenon 

is reflected by the vanishing of the particle diffusion 

coefficient at the critical point, as will be shown later. 

Thus, if an inhomogeneity arises, there will be almost no 

tendency for the molecules to move to the region of low 

concentration, and so, it will take longer for the system to 

return to equilibrium near the critical point. 

We can, therefore, think of the critical region as a 

region where the order parameter fluctuations not only grow 

large in amplitude, but also become very long ranged, and 

very long lived.  We will study how these phenomena affect 

various transport properties of the fluid. 

B.  Mean Field Theory 

4 5 Mean field theory '  presumes that the free energy 

density 7 can be expanded in a power series in the order 

parameter s(r,t).  The first order term will be -ys where y is 

the field conjugate to s.  In the case of the binary liquid 

y is the difference in the chemical potential per unit mass 
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of the two components, that is 

/* = 
_ A _ ^i 

m. m. (3) 

where m, is the molecular mass of the 1th component, and 

y. Is Its chemical potential.  In the absence of a conjugate 

field (i.e., y^o), we presume the free energy density to be 

symmetric In s, and write 

5;   . = Is' ^sH-/s 
IOCA.! 

(4) 

Minimizing the free energy density gives the equilibrium 

equation of state 

/t =- as ■♦■ bs  > 

and the susceptibility x: 

(5) 

v -.   Lm   /<)S \ _ „* 
^ 

(6) 

We know that at the critical point, the susceptibility becomes 

infinite; therefore we presume that the parameter a is temper- 

ature dependent, and positive for T>T , and negative for T<T . 

We will, however presume that the parameter b has negligible 

temperature variation.  Therefore, if U"o, the quadratic term 

in Eq. (4) is stable if T>T , and becomes unstable, correspond- 

ing to phase separation, for T<T , as shown in Fig. 2. 

¥ 

«Mämmmum,*^ 
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For an Inhomogeneous liquid, however, we must also consider 

non-local terms Involving gradients of the concentration. 

Since the fluid is Isotropie, the first derivative enters as 

2 
a scalar term proportional to (Vs) .  A term proportional to 

2 
V s transforms to an insignificant surface term when Integrated 

2 
over the volume.  Similarly, sV s transforms into the integral 

2 
of (Vs) .  Thus, we add to the free energy density the term 

Z       2 
—r— (Vs) , where Z la a positive constant.  Therefore, 

T -^c *• 4-V^ 

I ^ ^v.)1 .t s--/.s . (8) 

We ignore all higher order terms. 

All the thermodynamic properties of the system can be 

deduced from the partition function 

Za ~ 2- e   *• (9) 

where ft is the volume of the system, and ßBT   In a system of 

units in which the Boltzmann constant Is set equal to unity 

(VD. 
At this point, it is convenient to expand the order 

parameter in a Fourier series over all possible wavenumbers, 

as follows: 
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ifrr 

IT 
4 

Then,   -f U-o,   and we  ignore  the  s     term. 

(10) 

F ^ J^V - ZZLiT - ¥**■) Satire"*-'*'" 
r r 

and the Boltzmann factor becomes 

-fijjd 

(ID 

(12) 

Thus, by the equlpartltlon theorem we see that the fluctua- 

tions of different wavenumbers are statistically independent, 

and that 

where we have defined the inverse correlation length 

(13) 

K - ?"' = (a2) 
'/i (14) 

The vanishing of a at the critical point thus implies an 

infinite correlation length.  If we define the spatial correlation 

function 

QC^/n) -B <s(fr>s(rT)>   , <15> 

■■■».aawfe- iÄSöKÖaBalfc 
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thes translational invarlance derands that 

G(^n) = &(^-n)   > 

and, thetefore. 

G(^) - ] —  a   e 
u^.)3 dr (16) 

where 

r,. ^ r,-r; "21 

If we substitute Eq. (10) Into (15) we obtain 

■ *■•■ —> 

(17) 

Making the transformation 

H~i 
we can Identify 

3r  =   <lsrl2> 

(18) 

(19) 

Using Eq. (13), a special case of Eq. (19) Is Just the 

fluctuetion - susceptibility theorem: 

T dc?    Tj^r;(<S^)5(rT)> = "I - 0.  , 

i^äMÄSS2^äa&2SiiBüiiiii*id£iä sä^msssiMämMi^lä 
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or 

This suggests the obvious generallzstlcn 

Finally» if wc substitute Eq. (13) lato Eq.   (16), then 

(20) 

(21) 

-«r 
(22) 

which Is .just a screened Couloab iype potential with a 

screening length equal to ic  , the correlation length of our 

syctem.  Thus ve see thai In the critical region where the 

correlation length becoaes very large, the range of the 

correlation function tends to intlnlty.  Eq. (22) is a result 

first arrived at by Ornsteln and Zernicke  In 1914. 

We recall that the above results are only valid when we 

can neglect the foutth order term in the firee energy density. 

However, as we get closer to the critical temperature, the 

coefficient of the quadratic term «ill tend to zaro and the 

fourth order term will start to dominate.  We observe that a 

change of scale by a factor X in the order parameter induces 

4     -1  -1 2 the transformations b-HsX  and Z •*■!     X   ,   so that the quantity 
2 

bZ , which has units of reciprocal energy times length, 

remains invariant.  Thus if we define a length 

-l 

^-(b^Tj ) (23) 

then we expect that the above results of mean field theory 

ijäüs&fflämm^mämiüi 
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should hold when -jp-«l( and start to break down when £ becomes 
o 

larger than £ 

« C.  Bydtodynaalcs 

It is necessary to employ hydrodynamlc equations of mo- 

tion in calculating the time dependent correlation functions 

of concentration and velocity.  The time dependence of the 
3 

concentration  is derived from the continuity equation 

9S 

"at 
-«- V - J  ^ O (24) 

where J is the particle current, given by 

J(r\t) -= S(r:Ovur;tJ > (25) 

where v(r^,t) is the fluid velocity at space time point (r,t). 

It is also possible to write a constitutive equation, analogous 

to Ohm's Law in electricity: 

J - - XV/i (26) 

where X is the particle conductivity.  If we make use of the 

definition of the susceptibility, then we can write 

I 

and Eq. (24) becomes 

Vs V5 (27) 

where 

2>t > 

D - 

(28) 

(29) 

ass 
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Thia Is Just the diffusion equation, with D equal to the 

particle diffusion coefficient.  More generally, we have the 

equation for the wavenumber dependent concentration fluctuation 

;£v<; = -w. 
where Tr» is the decay rate of the kth mode, given by 

rr - ^ rk 

The solution of Eq. (30) is just 

(30) 

(31) 

(32) 

and 

3r^.) - <sfe,ct2)5r(c()> =<lsri'><efe (33) 

To determine ehe velocity autocorrelation function, one 

makes use of the equipartitlon theorem to calculate the equal 

time value, and the Navler-Stokes equation to calculate the 

time dependence.  First, we Fourier analyze the velocity field, 

.k'r 

n7» ^ r 
(34) 

and resolve v=»(t) into orthogonal components 

^^ ■}j*A"li) (35) 

We have only two directions of polarization, since we will only 

be interested in the transverse velocity modes, with e ky 

representing a unit vector along the direction of polarization, 

10 

Spyfea^to^aaa^aaaaaas: 



HOLTE 72-208 

such that 

We can write the klaetlc energy of the £luid as 

(36) 

kinetic J *• i 

^^^.WvWWJ' 
ar-r'j-r 

a r 

t    ■» 

= 1.^1 Iv^J 
*" !     tj>   u.-i      K (37) 

The  equipartltlon  theorem then  Implies   that 

P 
<'vP„ii> z 

or 

<'V'2>"- f (38) 

where p Is the mass density of the fluid.  Again we have the 

situation that different velocity modes are statistically 

Independent.  To determine the time dependence of the velocity 

modes we make use of the linearized Navler-Stokes equation: 

7) p^VKA)- V ITCrVO, (39) 

where J Is the stress tensor, whose cartesian components are 

given by 

11 

^HJ&al::-,-,:- : ^::,:i  . nfilr.mtälmmtV-*,. 
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^ - -phi "[iVt^W ^..iM^)^-) . (*o) 

where p Is the hydrostatic pressure, and n and C are the 

shear and bulk viscosities, respectively. If we separate out 

the transverse components of the velocity, that Is the part 

for which 

V^- vTC'^t) - O   > (41) 

then Eq. (39) becomes 

or 

J^«.^t)-i«'lV,(^t> , (42) 

sv^-Kv" ' 
and thus we can write the velocity correlation function as 

<V<')Vti)>= fe7feltj' 
(A4) 

We note that the velocity equal time correlation function is 

not k-dependent, whereas the equal time concentration correla- 

tion function has the k-dependent, and aluo temperuture depend- 

ent Ornsteln-Zernicke form.  We also note that the velocity 

modes will decay much faster than the concentration modes in 

the critical region, because we expect that D will go to zero 

strongly while ^ will either have a weak divergence or stay 

finite. 

In this chapter we have developed the tools of mean field 

12 

.^■g.j;a..vt.Aya»,l.M: »■>      .  ,  .*iistimMt»t0i ■■-        .   ■,    ■Kemmm&iit^ 



HOLTE 72-208 

theory and hydrodynaalcs, which will be indispensable In our 

analysis of the critical variation of transport coefficients. 

In each case we will relate the transport coefficient to an 

Integral over all space and tine of a correlation function of 

8 9 the relevant fluctuating quantities * .  To evaluate these 

integrals we will need to use the concentration and velocity 

autocorrelation functions, which we have just derived. 

13 

Mä^B^^^Mm^^^Mi^^. . i ■ ■■■ »■■•■ ■ 
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II.  CRITICAL SHEAR VISCOSITY 

A.  Fluctuation-Dissipation Formula 

The wavemmber and frequency dependent shear viscosity 

T)«>(ü>) can be computed from a fluctuation-dissipation formula 

relating the viscosity to the Fourier transform over space and 

time of the autocorrelation function of the local, time 

dependent« off-diagonal component of the stress tensor 

T dT.t)10»11.  That is 
X 2 

V(u;)  " zll^^Q^'^7^''1^6 m'-'V-^
,t«.) ^fv 

(i) 

where T is the absolute temperature in a system of units 

in which the Boltzmann constant Is set equal to unity (k^rl), 
o 

and where 'oi"^-^! and t21*t2~tl are rslative space and time 

separations. 

To calculate the excess viscosity in the critical region 

it is necessary to relate the local time dependent stress tensor 

to the order parameter fluctuations, which become very large 

in amplitude, extremely far ranging, and very long lived. 

This is accomplished by identifying the Glnzburg-Landau free - 

energy density with a Lagranglau density, and using a 

canonical expression relating the stress tensor to the 

Lagranglan density. 

The most probable configuration of a system is that 

which maximizes the partition function Z^,  or equlvalently, 

14 

Mfea^cfeArt^afefeWto^MT. -■^■..»aattaateüfej,» iszj&a&mami 
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minlBizes the total free energyJlTd r, since 

zrt- I 
.^r 

(2) 
a 

{*\ 

where ^ denotes the sum over all possible configurations In 

space of the order parameter s.  Thus, If we consider the free 

energy density ^ to be a functional of the order parameter 

and Its gradient. I.e. 

5   -   TIS.S-] t       6-^2,*, (3) 

where 

5 - ?- (4) 

then the problem of the most probable configuration of the 

system Is equivalent to minimizing the free energy, and, thereby, 

becomes a problem In the calculus of variations, where the vari- 

ation of the integral over all space of 7 is zero: 

^dtVlFKs;]   -~ o    , (5) 

or, the functional derivative of 7-    with respect to s vanishes 

<rs 
(6) 

Eq. (5) then becomes 

(7) 

15 
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If we cote that 

«*. - ^=4^3)- BX; IM^> (8) 

and If we irUgrate the second term in Eq. (7) by parts, 

Ignoring surface terms, we get 

For arbitrary variations 68, this leads to the Euler- 

Lagrange equation 

3 
3'J- Dr ~   o  . 

(9) 

(10) 

Therefore, /e can employ a canonical formalism, with the 

free energy density analogous to the Lagranglan density in 

12 scalar field theory 

We can, therefore, use the absence of explicit coordinate 

dependence of the free energy density T   to derive an expression 

for the stress tensor T...  Under an infinitesimal displacement 

X. = X- t. (11) 

the free energy density changes by the amount 

(12) 

If. however, 7   has no explicit coordinate dependence, then 

S5 '    H S^   *  ±  ff- <Sv j (13) 

16 

SiM.Äl«ifei«s«SSttJ!KSSiSi •■ijwgtiMiy- .—i^M^Miiii^^ 
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where 

4      9S v 

But,  by  the Euler-Lagrange  equation,   Eq.   (13)   becomes 

(14) 

x«".-  

(15) 

If we equate Eqs. (12) and (15) we obtain 

3 3 

or 
3 

y — T   -  o 

o (16) 

(17) 

where we identify T.. with the stress tensor, which we define 

by 

(18) 

In particular, let us now consider the Ginzburg-Landau 

equation for the free energy density 

17 

(19) 

mmm 
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where. In the binary liquid ve identify the order parameter 

s with the excess local concentration, and y with the chemical 

potential, then the Euler-Lagrange equation provides us with 

the "equation of motion," or in this case the equation of 

stats: 

/* 
^ as <- fas3 - 2"Vs (20) 

and the off diagonal component of the stress tensor: 

s;^) = Z S.S^ 

z"[fx^-:t)]lfzs(r-:t)J (21) 

We note the ys term in the diagonal components of the stress 

tensor, so that the divergence of the stress tensor will contain 

a term V(sy), which is recognizable as the force per unit 

volume caused by the gradient In the chemical potential density. 

This, in turn Is equal to the time rate of change of momentum 

density, or momentum density flow, in a region of fluid  Thus, 

we can Justify the choice of unity as the arbitrary constant 

factor involved in the definition of the stress tensor, Eqs. (16) 

(18). 

From now on it will be convenient to work in wavenumber 

space, rather than configuration space.  This is accomplished 

by Fourier transforming the order parameter as follows: 

18 
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tt>r (22) 

Sit)-  ~fif*\dtrs^Jt)e (23) 

where ft Is the volume of the system.  In the thermodynamlc 

limit It is possible to transform the sum over IT into an 

Integral over k by the prescription: 

(24) 

where the upper limit of integration is a Debye cutoff. 

Similarly, if we Fourier transform the local stress tensor: 

IT 

then by Eqs. (21) and (22), (26) becomes 

-l&r* 

(25) 

(26) 

T/ct)-   ~izL(Aki-L)ScCi)5^eCt),        (27) 
fi'   c 

We can now rewrite the fluctuation-dissipation formula 

for the shear viscosity, Eq. (1): 

(28) 

19 

...K  ...^A-^-L^W^ 
SSSl^^^S 
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Translatlonal invarlance of the stress tensor demands that 

k'- -k, so that Eq. (28) becomes 

<f 

TA^J^KA^JU.» . (29) 

To calculate the anomalous part of the shiar viscosity 

in the critical region, we substitute the contribution to 

5"  (t) of the concentration fluctuations, namely Eq. (27), 

so that Eq. (29) becomes 

X <SrCt2)SrrCt2)^(t()5 .(t.))      (30) 

At this point we have to consider the correlation 

function In the above equation.  He must correlate two com- 

ponents of the order parameter at time t. with two other 

components at time t..  We will make a decoupling approximation, 

which we will justify later.  This approximation suggests that 

we treat this correlation function as the sum of all possible 

20 
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products of teo correlation functions of the fore 

<8k ^'j^k ^i^*  In Feynaan diagra« notation, this is 

equivalent to considering only graphs of the form: 

(31) 

Later we «111 show that higher order graphs do not contribute 

to the shear viscosity.  Thus we will write 

<Sr(ti)S^rtti)Sr/<t.)5-?/Ctl)> ^ 

^V^Sf^XV^^r^'^^^r ' WT)-  <32> 

If we assume that the order parameter fluctuations decay 

exponentially with a wevenumber dependent lifetime IV we can 

write each time dependent correlation function as the equaJ 

time correlation function times a decaying exponential as 

follows: 

21 
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^(t^s^ct.)) ~ <\^0 e 
•VrVt.i 

(33) 

If ve »abstitute Eqs. (32) a&d (33) into (30) ve obtain 

xC5r,-f **n-f-?>jA.e     e f   ;' .04) 
—«o 

In the above equation we will take q; to be along the z-axis, 

so that Sq. (34) beconea 

,v   ^UfV + nr-r) 
x    <is/><tsfr^>- ,enJ  I     . (35) 

To  exhibit  and make  use of   the  symmetry  in  the  above  expression 

it  is  convenient   to make  the  substitution 

L, (36) 

then 

Aqr^>  = " ~^^^x^;^-^KlSrl
i><lSrl1-> 

(37) 
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If we note that ve can write 

jti-i(.*i~t*y + j(**+h) (38) 

then only the first tera will contribute to Eq. (37), because 

the second tera will antisyaaetrize (37).  Then 

Now we ace in a position to apply the above formula to 

a few special cases. 

B.  Teaperature Dependence at Zero Frequency and Uavenumber 

At zero frequency and wavenumber, £ = -£, u=o, and 

Eq. (39) becoaes 

i 
(40) 

-1 where K is the correlation length. In the critical region 

we will use the Ornstein-Zernicke formula for the wavenumber 

dependent order parameter correlation function, namely 

27 
1r = <isriO -- -^T (41) 

For the linewidth of the order parameter fluctuations we will 

13 14 use a modification of the Kawasaki  '   formula: 

6iri| 
(42) 

where r\     is the non-anomalous, background shear viscosity, 

which is the component of the shear viscosity not Influenced 
23 
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by the critical fluctuations.  The Kawasaki scaling function 

K(z) is a slowly varying function with a ainimin value, K(o), 

of 1, and a aaximua value K(<») of ~ (-1.18), explicitly given 

by: 

Kfe) = |o^li^(i-tOt"Vi. (43) 

Experiaentally, it has been found that the linewidtb behaves 

as if the scaling function were constant and equal to its high 

wavenuaber Halt, -r-, and n  replaced by an experimentally 
o        0 

fitted paraaeter n, about 29Z larger than the background 

viscosity T\   .     Therefore, we assume that 

r^ ^ 
I ^ =• —zr {.* + £) 

Substituting Eqs. (41) and (44) into (40) we get 

i«2 

We first calculate the angular average: 

2rr 

-i 

so that Eq. (45), upon transforming the sum to an Integral 

24 
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(45) 

j C^i\       if"       f 

IT Jff 

0 o 
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through Eq. (24), becones 

k 

^ rdfc (47) 

To eraluate the above lategral we make the trigonometric 

substitution: 

j[ =    Ktute (48) 

so   that 

sf^Uv ] 
W "T" 

« f     ^!lg j© —  (   sir.1© cos e je 
ol Cos©       " ^o 

«[-Sin© +Cnia*(|v|)-^n3e] (49) 

la the critical region, where the correlation length becomes 
kD very large, — »1» and 

tan •^     ^ (50) 

25 
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Therefore: 

> = -i.Cn-tanCf-Ä.) 

~  _5 -*  +  f   ^ (51) 

to the lowest order in — .     Thus for zero wavemmber and 
KD 

zero wavelength, we have: 

AqCQ ^ _8_ [, zk l;.l<. 
with 

C^--! .-..333. 

Assuming   that  ic vanishes   like 

K     « 

then 

Mill «     f       />     T~T. f      .  7 

Therefore, if ^^ is plotted against In 
T_T 

(52) 

(53) 

(54) 

(55) 

, the slope 

of the line that results should be - 8v 15,16 

15U2 

The critical shear viscosity of the binary system 

3-methylpentane-nitcoethane has been investigated by Stein, 

Allen, and Allegra  , who found a slope of -.039.  The 

26 
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critical exponent v for the divergence of the correlation 

length has been found to be equal to .616 for the 3-methylpen- 

tane-nltroethane system, which would yield a theoretical slope 

of -.033, a value 15Z lower than experiment. 

C.  Fourier-Laplace Transform of Critical Shear Viscosity 

In the calculation of the correction to the Rayleigh line- 

width due to the anomalous shear viscosity it will be useful 

to know the Fourier-Laplace transform of the critical shear 

viscosity, defined by 

Aff (p) ^ Tke^'j^e^V^tJ^^t,)). (56) 
a 

This will only modify the frequency factor of Eq. (39) as 

follows: 

z <>sPia><ivi'> 

We will calculate this quantity at the critical temperature 

(57) 

T"T , where 

^T 
It ^<isri1>- -j (58) 

rr "-' ^ £ i (59) 

If we convert the Laplace frequency to wavenumber units, 

by the equation 

27 
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13^ 

Q^(^f (60) 

and insert  Eqs. (24), (58). (59) and (60) Into (57), we obtain 

lex'1 ^Y^ ^ j_fVr   ^M-cif 
V + t'^-kQ* \ IT 

Let us now consider the Important special case q'-cT 

Then we can say £*>-£, and Eq. (61) becomes 

A 

(61) 

/HV^ „ ^ 
TT J e1 ie\h Q; 

for small enough Laplace frequency to consider Q<<k_.  Again 
o 

we get the ——7 times a logarithm term, with the inverse 
ISrr 

correlation length replaced by the frequency In wavenumber 

18 19 units, as we would expect from the principle of dynamic scaling  ' 

Because of the convenient definition of Q, we have no additive 

constant to the logarithm, as we had in the case of zero wave- 

number and frequency.  Equivalently we can say that (In  K-C^0') 
-c(0)   ^ 

is to be replaced by In Q, or that Q scales as ice ^,   i.e. 

28 
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C(0J      -^3 
(63) 

Returning now to the more general case, where q - £+1 , 

or graphically: 

2 

t_ 
it la convenient to transform the Integral over y •= cos6, to 

an Integral over V   through the law of cosines: 

i.   x 
*' = *-%- ^ 

or 

/L.-. 
S-r^f 

t'de 

A 

*1qxjZ'i- 

.2 r'3- ^ '*   .,i 

'i-h - r2*" = r i 
29 

ttwüi 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 
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Hoting that the Integration over the axlnuthal angle gives a 

(2lt 2 
factor of      cos 444 - ir, and substituting Eqs. (64)-(69) 

Jo 
Into (61), we find: 

t i 
If we transform to dlmenslonless units, where 

e u = 1 

»•■1 
(71) 

(72) 

then Eq. (70) becomes 

J*fi  t«**») 

n"    ^^J a J u' (uVu'V^p)L J ^ (73) 

where the region of Integration is shaded in Fig. 6. 

The double Integral in Eq. (73) is more readily evaluated by 

a 45° rotation of the axes; letting 

in- u 

U -  U J {   . (74: 

(75) 

30 
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then, the Jacobian of the transforuatloc is 

7>C*>*'> 

1 

2. 
1 

1 

■ i 2 

and 

H't a1   - (a'-a)CaVu) = xx'  > 

Substituting Eqs. (75)-(80) into (73) we obtain 

1    -i 

2fe 

(76) 

(77) 

(78) 

(79) 

(80) 

/Sir ir*^> (81) 

where  the  function  f(q,P)   is  defined  by: 

P3 
(82) 

31 



HOLTR 72-2-8 

Noting that the double Integral In the above equation 

ranges over valuea of z larger than unity, and values of x* 

smaller than unity, we can approximate it by neglecting x* 

and unity when added or subtracted from x, so that a first 

approximation to f(q,P) is: 

= £0 
(J5)3^ P 

1  + P 

(83) 

Again we recover the logarithmic dependence. If either 

the wavenumber or frequency is very large, such that q and Q 

are of different orders of magnitude, then the ratio of the 

excess shear viscosity to the total shear viscosity is 

2 
equal to S/ISTT  times the natural logarithm of the ratio of 

2k. to the larger of q or Q. 

We note that f(q,P) depends on q only through the upper 

limit of the x integral in Eq. (82).  Thus, if we subtract 

we can extend 

the limit to Infinity, having subtracted -"it the divergent 

part.  If we define 

32 
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then the scaling function a will only be a function of P, 

which Is proportional to the ratio of the Laplace frequency 

to the cube of the wavenumber.  Therefore, If we subtract 

Eq. (83) from (82) and extend the Integral to Infinity, then 

we have 

.s-r ,f' 2  .f  <^-')      i 

= - f^ /jd/xV Xrf)| („T^T^^a 
3xx' i       —1 

vp)    (/^PX^-SAX-VP: 
(85) 

It  Is  possible  to perform  the  x1   Integration  If  we  let 

b(x)=  C3X) h 

(86) 

(87) 

then 

\W 
» o u 

1.  1   ,2   i\ ..l- 

I o ^ 

-if^rA^-JM   > 
33 
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where. 

(89) 

and 

(90) 

To  evaluate J.Cx),   It   is  coavenient  to make a  hyb«.rbollc 

substitution: 

X^-K^-X^.-trtnk^;-  x'sec^e»  , 

<ix" -   XSecii G- dO    , 

so  that 
tdnl» n 

J» % X23echte 

(91) 

XJ bi«Ki©(t-zxifci«^s-»-x'<tiv1^e>a9< 

Noting   that: 

(92) 

(93) 
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we compute 

(94) 

To evaluate J2(x), it is convenient to sake a trlgonoaetric 

substitution: 

y'^w.e 

(95) 

<Jy'-^S€c2<>ae> 

so   that 

J2u; J iCv^ir 
(96) 

4 ^c' ^ 

Noting   that 

(97) 

35 
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we computm 

o-x'X.'^K'-rW'^-^-x'J^I^.   <"> 

Therefore: 

(99) 

and by Eq. (88) 

To study the behavior of ani?)   for very large values n 
of P It Is simplest to refer back to Eq. (85), and note that 

2 
for large enough values of P, we can neglect the term axx* 

3 
compared to x +P, so that Eq. (85) becomes, approximately 

VP) --fjlx'JaxVW')!^ - &£ 
• 0 

36 
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= -f f Va-x^lo^)^ -*'r\£-rt\.   U01> 

-2/3 
«e can see that the above expression will vary as P    to 

,t order In P'1.  In fact if we define lowest 

W^flJT 
then 

iöfe> --ft^- 

(102) 

(103) 

Evaluating   I(P)   we  findi 

ICP)3 j'fe - ip2/i^^ ^3(i-w g;:i 

5/3 r 
(104) 

and 

d   _ Z    2Tr 
-^W^ t'i7%P 

5/3 
(105) 

Thus   Eq.   (101)   becomes 

) - - f p2/ä Iml^o-^^^ 3-SJ^^-x'0 3 YP)^-Tr    U/3o 

^L   p2/3 

37 
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The scaling function was calculated for various values of 

P( by numerically integrating Eq. (100).  In the process «e 

transformed the infinite range of integration to a finite one 

by the transforsation 

X * tan 4> (107) 

and 

% 

(108) Jq(x)dix  = J «jCtiui 4 ) sec 4^ <* «^ 

The results are plotted In Figs. (3)-(5). 

We note that for the special case P-O, we have 

\^ -IJ^Io-^loVKx^-k-O -O-^X'-^' f )J ^~] 

0.4,33 . (109) 

Eq. (85) was also used to calculate the initial slops of the 

scaling function, as follows: 

O-^oi» f laxx'-jdxx'O-x'1)^ - c^x-X«Ux-')x2] 

= f i^i!.xxV/')-f J^vvoj^^ 
I O O i 

o • 

-i'fjAV'o-x")^^!?^-^- -^FVcxsiTyj 
o 
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~   0-25H (110) 

Therefore,   for  small P 

(111) «T (P )   ^ - 0.4.33 ^ 0.25*4 P 
1 

The integrals la Bqs. (109) and (110) were evaluated 

numerically.  Details of their evaluation, along with the 

general evaluation of 0 (P), Eq. (100), can be found in the 

Appendix. 

The wavenumber dependence of the critical shear viscosity 

in the low frequency limit can now be written as 

n 
or equivalently we can say that K  and q scale as 

(112) 

-in ^ -  1.333 +-~- Cn?- O.Gl^ 

or 

K -t-i-^e 
0.700 

K— .^O^. (113) 

In this chapter we have calculated the critical shear 

viscosity by use of the fluctuation dissipation theorem, and 

have verified the experimentally observed logarithmic divergence. 
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He have also shown bow the correlation length, wavenunber, 

and frequency scale vith respect to each other. 
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III.  WAVENUNB1I DEPENDENCE OF THE CRITICAL RAYLEIGH LINEWIDTH 

A.  General Formallsn 

The Raylelgh llnewldth T-r is the decay rate of the <p- 

wavenumher mode of the concentration fluctuations.  It Is 

given by the formula 

•Y = *t% (i) 

where D-r Is the q-dependent diffusion coefficient.  The 

diffusion coefficient is equal to the ratio of the conductivity 

X*» to the susceptibility Xjt'     The susceptibility is proportional 

to the equal time value of the correlation function of the q- 

mode of the order parameter. 

xr = ^<iv2> (2) 

By the use of a fluctuation-dissipation formula, we can relate 

the conductivity to a space-time Integral of the correlation 

function of the solute particle current 14 That is, 

v=J?K j^v*"'"^^ jf^t.)>,   (3) 
where JA(r,t) is the component along the q-dlrection of the 

local solute particle current, which is equal to the second 

order product of the concentration fluctuation 3 times the local 

fluid velocity v, 

(4) j(rt)-sc^ovvl^t)' 
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Therefore, any simultaneous fluctuations In the concentration 

and velocity fields lead to nonvanlshlng contributions to 

the current, according to Eq. (4).  Such fluctuations In 

the current In turn give a contribution to the conductivity by 

Eq. (3). 

At this point. It Is useful to make a decoupling 

approximation, separating the concentration fluctuations from 

the velocity fluctuations.  We can do this If we note that the 

transverse velocity fluctuations do not lead to any concentration 

changes In the liquid, and as a result have much lower frequency 

components than the longitudinal modes.  Consequently, the 

transverse velocity modes make a much greater contribution to 

the Integral In Eq. (3).  Therefore, we can ignore the longi- 

tudinal velocity modes, and decouple the transverse modes from 

the concentration modes.  This assumption now lets us write 

the integral in Eq. (3) in factorized form, as follows: 

V" irj^M^'^ es) 

It will be convenient for us to work in wavenumber and 

frequency space.  Therefore, we will Fourier transform the 

concentration and velocity fields as follows: 

Uf-f-yt) 
(6) 

(7) 

42 
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If ve Bake use of the translatlonal Invarlance in space and 

tine of both the concentration and velocity modes: 

(8) 

<*iVCu,>VV(u>)^2ir^^u>)S ' f^W^^> (9) 
4^-r 

and we recall the Fourier transforms of the delta functions 

-•a 

JaVe      ?     . n^.r , 

then Eq. (5) becomes 

For the concentration fluctuations we will use the 

Ornstein-Zernicke form, with a decay time of P.  That is, 

ta)t2l 

= <ls^ll>lVWt"er-,tJ 

«<15ir,'
4>/(wirV')       , 

üiaüiiiiütttiiiiiii 
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A 

where ^«jj»! | > Is the equal tine correlation function, and 

jTCWtrj*!) la the Lorentzlan function of the frequency « with 

a half-width of F^, ( given by: 

itot  -PitI i0*>r)~$teio>td 
ir 

r+ioj r-ico r fto ,x   • (14) 

m 

We can resolve each velocity mode Into Its two components 

of polarization: 

& A^i -^ V1 (15) 

where e^- and e«.. are two orthogonal unit vectors in a plane 

which Is normal to the direction of k as shown In Fig. 7. 

If q Is an arbitrary direction, and if q'k=cos6 defines the 

■A A -» —» 
angle between q and k, then since Vg, is normal to k, then we 

can pick one direction of polarization normal to both k and q. 

say Cj**, and then write 

y\  -A 

rtkl~Sl*9      , (16) 

and thus 

<lf V   (a>>l*>~  5tn2Ö<jv^Ccu)|2>. (17) 

We can write  <|v> (w)| > as the Fourier transform of the 

time correlation function of vg. (t) as follows 

<vw>,'> ä A- ^^v^ v'1') ♦ (18) 

44 
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The equal time correlation function is given by the equi- 

partition theorem of statistical mechanics: 

\ Vi   /       f     > 
(19) 

where p is the equilibrium mass density of the liquid.  The 

time dependence of the transverse velocity modes is given 

by the Navier-Stokes equation, which states that they decay 

at a rate equal to ■^•k , where r\  is the shear viscosity. 

Therefore: 

(20) 

and 

OV^O-^C^ ^P)     . (21) 

where we have inserted the wavenumber and frequency dependent 

value of the shear viscosity for T\. 

If we insert Eqs. (13), (17) and (21) into (12), we 

obtain 

In the above equation we essentially have the product of 

two Lorentzlans, if TVt*(u)) has a weak frequency dependence. 

Since the first Lorentzian has a much smaller width than the 

second one; we can replace the second one by its variation In 

the neighborhood of u«o, that is we make the approximation 

45 
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A(o; 1^*'). Ho- 1*^V)~ ^e   . (23) 

and,   therefore: 

Ar « ^Ve<^^-^\\p t^ (24) 

B.  Kawasaki Theory 

Let us now investigate the Important special case, where 

the shear viscosity Is Independent of frequency and wavenumber, 

and we can write 

«<:-)= ^ (25) 

Then 
oa      „co 

fl^r^) --\%\*.^iv**M ^-^s,^ l,(") 

and 

v-i^l^v^1'-1^^    (27) 
T- 

If we assume an Ornsteln-Zernlcke form: 

ZT 

thai Bq.   (27)   becomes: 

i^*-*^  '   *\^*f 
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?T (' ( dk 

(29) 

The second term In the brackets of the above expression does 

not ccatrlbute because it Is an odd function of y.  To evaluate 

the above integral, we substitute: 

then 

^(.-wV* 

^ ' " 20^W?* 

wdw 

(30) 

^7- r   waw 

(31) 

^IH 
47 
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vhich is Just the Kawasaki resultT vher«: K(x) is the 

13 14 Kmasakl scaling function  *  , given by: 

K(x)^u^r[^-(^-iKx]. (32) 

C.  First Order Effect cf Critical Viscosity 

Now let us return to the general case of Eq. (24), and 

assume that we can writ . 

V(to) ' ^ * A1rCw) (33) 

where Ar|^(u)) is the critical wavenumber and frequency dependent 

viscosity, and n  is the background, or ideal viscosity.  If 

the anomalous viscosity Is a small part of the total vlrcoslty, 

then to first order we can vrlte: 

ir^-'-[%^x^T-%l'- ^¥±] (34) 

We will now consider the wnvenumber dependent conducti- 

vity at the critical temperature where K=O.  Thus to lowest 

order 

£T (35) 
,4U 

and the first order correction Is, then by Eq. (24): 
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By Eq. (39) of  the previous chapter, »e have 

«here 

(37) 

and 

iwr,r')3--^^:(4-4)l<'V2><'Vll> •      (:,8) 

Therefore,   Eq.   (36)   becomes 

^ (39) 

But 
«O   9» 

»a» 
e      e 

•o,00 -y#m -rjtt 

-m~«o -r- 

so that Bq. (39) becomes: 

(40) 

^-f^<m<*\^tw?h-p%. ̂ t 
(41) 

Js^l1-(i.«)']<l^>A^(rfr) ^ 
r 

(42) 
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where äi\*~iT~jP  in   the  Fourier-Laplace transform of the 

anoaaloaa shsar viscosity, evaluated at the Laplace frequency 

equal to the relaxation rate of the q'-k" concentration mode. 

Previously» we have found that 

w^JHS^p-^). (43) 

At the critical temperature T we can uee the formulae: c 

<'sf *''>=,7 
zr 
I?)1     ' 

and 

- T ,-iri3 
rFf=^iF' 

(44) 

(45) 

Inserting Eqs.  (43), (44) and (45) into (42) we obtain 

T    T.% 
where 

r^r^f . (47) 

If we choose the polar axis to be along the direction of,qr, 

and convert the sum in Eq. (46) to an Integral, and change co 

dlmenslonless variables, according to the transformation: 

-I 
= (UV|-2UA> 

•h 
(48) 
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then 

Only the first tern in the brackets of the above equation 

has any dependence on q.  When Integrated, the other terms will 

give constants.  Therefore, let us first examine the coefficient 
2kD 

of the In   term: 

—i -    Jii = u 

/       V        ,        • Vi        _i 

Therefore, we can write the first order correction to the 

conductivity as follows: 

where C, is just a numerical constant given by 

Thus, to within a constant Eq. (51) is the result we would 

have obtained if we had inserted 

(51) 

(52) 

W ATr (53) 

51 

I'^t.-Äisüfeiultiy iSfc^Lj.ÄeÄf.- ■i*i*ü&iai«ii»^tiyi 



HOLTR 72-208 

into the Kawasaki fornula for q»ic: 

h 
zr 
^n (54) 

He will evaluate C- thtough the use of two successive 

transforaatlons.  First we will transform the Integral over y 

to an Integral over u* by 

djU 
u'du 

(55) 

s 

so that Eq. (52) becomes 

C^F/^I2*^^^ >  (56 ) 
lU-tl 

where the region of Integration is the diagonal strip shown 

in Fig. 6.  Noting that the term Involving the viscosity 

scaling function depends only on the ratio of u* to u, we 

transform to polar coordinates so that the unavoidable numerical 

Integration be a single Integral instead of a double integral. 

We let 

K« Vtost       j 

ii'= VSm 4      I   j (57) 
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then 
V/^) 

0       V((*J (58) 

where v1($) is the Intersection of the ray $ » constant 

with the line u'+u - 1, and v.(^) is the intersection of the 

same ray with the appropriate one of the two lines |u'-u| = 1, 

or, 

V,C<* ) - Ceo« 4. -e Sin 4» ) (59) 

V2(^) = \ct>s4>-S\.n4>l (60) 

We can rewrite Eq. (58) as follows 

>  (61) 

X 

where f/*) and 1'2(4') are the radial integrals: 

We will first evaluate ^((j»): 

V,(4») 
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CoS 4» + Stn^ 

- z\t*\***(S**yi\-*nl4'] ■ (64) 

To evaluate ^((j)) , we will first establish a few integral 

identities, namely: 

lo+ox 

which  Is   true  fcr  n ^  -1,   and 

(66) 
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Therefore: 

.  J ^ICOS^-S^/   ^ ß„ least+*~<t>l   h^^fc^s^)1 

J 

(CjoS<^-HStn4>3 
rl (cos^ - ^r,<hfC^4 + s^d) 

\-^ftanC^^<i>)l^ S/r,2^£nlCosZ*l   . (67) 
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He note that the Integrand In Eq. (61) has a logarithmic 

singularity at ♦ - ■j .  Therefore, we will subtract out the 

singular part of the function, and Integrate the remainder 

numerically, while the singular part can be Integrated 

analytically.  In other words. If we write 

CA=J #(*)<**> (68) 
o 

where 

f^)^^^^^^^)''/^/^)^^^)^^^*^:/,3^]- !/^)] ,(69: 

and let $($) be some function that can be analytically 

integrated such that 

#(5 )-$(?)= O   . (70) 

then we write 

C^Jl^)-^)]^ 4.J #00^ > <71> 

where the first Integration is performed numerically, and 

the second analytically. 

To construct *(♦), we expand the singular parts of $(({•) 

about the singular point, 4> K T» and evaluate the non- 

singular terms at (j) > 7-.  Thus using Eq. (69), we can write 

Around <|> ■ -r, we can write 
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i^-^--^r^-^m*--A- ™ 
Therefore, 

t^-iH^&l-*"2*] (64) 

becomes 

tm-AknT^i ->]=-A^c">*-*'\  • (74) 

and 

nM-^B^^*2*]^2*1 (67) 

becomes 

%^-{-^r[]^2i4'v 

^ JLl + 0+£*z)&l<t-*l +1" M-1* I - (75) 

Noting that 

<r^) -^^(4/2)^-.Vg95- } 
(76) 

we can Insert Eqs. (76), (74) and (75) into (72) to obtain 
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--—i(.28S«r--.7W/i«/</-§
:/~i*2/*~5/j .       (77) 

To Integrate #(♦), we not" that 

/*% ,^ .v^ 

(78) 

(79) 

-(^f-a^?-2)| = a^/4)| .       (so) 

Therefore, by Eq. (77) 

A graph of *(<|») - 4(4)) vs <j> is shown in Fig. 8. 

Numerical integration gives (see Appendix) 

(81) 
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rh 
Jt$L4)~$C*)}<et~'-0.'t7*7, (82) 

Therefore, 

Cx  - -1.25 , (83) 

and 

AX: (84) 

Thus, to first order, this Is equivalent to writing 

X 
ZT 

iCnl tif 

it I     ' (85) 

where 

.»ff +  ii 2^ 

Experimentally, It has been found that Eq. (85) Is well 

satisfied If 

(86) 

'?' ? (87) 

where 

i - '^ (88) 

Thus, If we replace nl" by n In Eq. (86) and solve for n, 

we find that 

1« 
= [i-^^f-'-^)]''. (89) 
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To check the above result with the llnewldth measurements 

20 of Chang, Sengers, Keyes, and Alley  , It Is first necessary 

to determine the value of the parameter kD, the high wavenumber 

cutoff.  This Is done by using the measurements of the tempera- 

ture dependent viscosity of Stein, Allegra and Allen  .  Both 

investigated the binary mixture 3-methylpentane-nltroethane. 

The critical viscosity was found to have a temperature 

dependence of the form 

Aq   =z   a in £ +  b      , (90) 

where 

7"-7? 

and the best values of a and b were 

with a background viscosity 

^ —   3. £ * /o    qm/cfn-sec . 

(91) 

(92) 

(93) 

The llnewldth measurements produced a fitted effective value 

for the viscosity 

— -3    / an»- sec (94) 

Assuming that the correlation length obeys a power law of 

the form 
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then ve predict a temperature dependence for the critical 

viscosity as follows: 

(95) 

^   Ä'£n£   H-    b (96) 

where 

a   -      __,. 

(97) 

(98) 

b    ~  /sir' 

The  llnewldth measurements were best  fitted  by   the  values 

P    -=.   2.56  A 

^ - .6/6 

Using these values we get 

a' - - I.LZ* /o14«" I cm-sec.   i 

or an 11% difference from the value given by Stein, Allegra and 

(99) 

Allen. 

If we assume that our predicted value of b1 is the same as 

6, 
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the value by given by the viscosity data, then 

ikn  ~   0./23A   '    . aoo) 

The wavenumber used  In  the  llnewldth data was  dependent 

on  the  scattering angle of   the  laser  light,   and was  given by 

t X   SlnJ (101) 

where X - 6328A was t^e wavelength of the laser light used, 

and n » 1.38 was the index of refraction of the liquid.  Thus 

^ = i2.7fy/Ö^A')scnj 

and 

26, it i 

Using the fact that 

(102) 

(103) 

Jtn «9.8 -   ^.^fß (104) 

and  inserting  it  into  Eq.   (89)   we  obtain 

% 

n ^n f J j 

*   |.«28+ ./2^  ^Slnf j       t (105) 
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The scattering angle ranged fro« 30° to 130° leading to 

% 
=  1.31 

«wax 

(i)    - ,.zi 
\*[0' min 

whereas, the observed value is 

(1) 

(106) 

(10/) 

(108) 
1« /<»bs 

which, within experimental uncertainty, is In very good agreement 

with theory, considering that it is only a first order theory. 

D.  Viscosity-Diffusion Self Consistency 

In this section we will demonstrate that self-consistency 

of the viscosity and the diffusion coefficient demands that 

no power law divergen: 2 occur in the critical viscosity.  We 

will do this by examining the Fourier-Laplace transforms of 

both the viscosity and the diffusion coeffielen*:.  We can 

adequately express the Fourier-Laplace transform of the 

diffusion coefficient as 

W- ^ (109) 

where we neglect the frequency dependence of the susceptibility. 

This is justified because we know that in the critical region 

the decay rate of the concentration fluctuations becomes 

vanishingly small, while the decay rate of the velocity 

fluctuations remains finite, and possibly diverges.  To study 

the Laplace transform of the diffusion coefficient we put a 
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-pt2i 
factor of e     into Sq. (5) and change the limits of 

integration to (o,»), and substitute it into Eq. (109), 

to obtain 

O0 

l_f,. -K. 
C*       ' (110) 

HV ~ rhr^ "jA.el'V:)scn}><fiKCt,)f ^t.)>, 

where we neglect the time dependence of the concentration 

fluctuations.  If we Fourier transform in space 

5cr)"fi7i^V'<f (HI) 

v^t;, = ^/.Xvt;e ' <u2> 

then 

^f^H^'-^^Fk^  ^ 
Similarly, by Eq. (39) of the previous chapter we have 

^'^ * (114) 

Let us now define two characteristic frequencies 

associated with the critical Rayleigh llnewldth and viscosity, 

pp and p , re&pectiveiy.  They are obtained by replacing all 

wavenumbers by <, the reciprocal of the correlation length, 

as follows: 
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_  1* (fi> ^ K (116) 

and we know that Pn
>>PT<* 

We assume that the critical behavior of the shear viscosity 

disappears at frequencies larger than p .  Thus if we look 

at the frequency denoninator in Eq. (113), we see that the 

most important contribution Is from wavenumbers smaller than 

K, so that we can replace all lengths by K     , and the 

hydrodynamlc value of D is of the order of magnitude 

o-W (117) 

However, from the frequency denominator of Eq. (114) we see 

that the critical frequency behavior of An cuts off at pp, 

a frequency much smaller than p .  Thus n*(pn) can no longer 

have any critical behavior.  Therefore, all the power law 

behavior on the left side of Eq. (117) is taken up by D, and 

as a result the shear viscosity cannot have any more diastic 

behavior than a logarithmic divergence, a& was previously 

22 13 demonstrated by Swift  , and Kawasaki 

Equation (117) is a general equation for all fluids.  That 

is, it can be used to determine the critical variation of the 

transport coefficients ü  and r\.     The liquid-gas phase transition 

is very similar to the binary liquid phase transition, with the 

density difference between the liquid and gas phases replacing 

the concentration fluctuation as the order parameter.  The 
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transport equations are also slallar, with the particle 

diffusion coefficient D, replaced by ehe quantity 
PC, 

in 

the liquid-gas, where X is the heat cenducti/ity, p the density, 

and C  the specific heat at constant pressure.  However 

—T-  t  like D, vanishes proportionately to K.  In fact, it is 
PCp 
possible to use the same arguments leading up to Eq. (117) to 

show that the shear viscosity cannot have a power law divergence, 

only a logarithmic divergence at worst, and that the decay 

rate of the order parameter varies as the third power of the 

21 wavenuaber, a result previously found by Kadanoff and Swift 

The situation is more complex in the superfluld phase 

18 transition  .  However, to the extent of the validity of mean 

field theory and dynamical scaling« it is still possible to 

use Eq. (117) to predict the behavior of the critical shear 

viscosity.  In the superfluld we have a complex order parameter, 

with the superfluld density related to the square of the ampli- 

tude of the order parameter, and the superfluld velocity propor- 

tional to the gradient of the phase of the order parameter. 

The diffusion coefficient D of liquid helium in a porous 

medium leads to the anomalous increase in the thermal conducti- 

vity in the high temperature region, and describes the anoma- 

lous attenuation of second sound in the low temperature region. 

-1/2 It can be shown the D diverges as K   , so that Eq. (117) 

3/2 would predict that the shear viscosity vanishes as K   in the 

hydrodynamic regime, and varies as the wavenumber k raised t« the 

3/2 power for k»ic, if we assume the validity of dynamical 

scaling. 
66 

^L 
tAiiaaj M^eaja.. ■ :~-^----jariaifltjii 



HOLTR 72-208 

In thl« chapter we have shown how the critical shear 

viscosity decreases the >alue of the relaxation rate of the 

order paraaeter predicted by the node-coupling theory of 

Kawasaki.  We have also explored the self consistent nature of 

the critical diffusion and viscosity, and its extension to 

other fluids. 
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IV.  PERTÜRBATIOS THEORY 

In this chapter we will explore the effect of higher 

order pertubatlons on the critical shear viscosity and 

Raylelgh llnewldth.  He will present an equal time justifica- 

tion for the decoupling approximation In the calculation of 

the anomalous shear viscosity.  Finally we will examine "vertex 

corrections" resulting from time dependent perturbation theory, 

and show that they are very small effects In the critical 

Raylelgh llnewldth and shear viscosity. 

A.  Static Perturbation Theory 

ID static perturbation theory we employ the fourth order 

term in the Ginzburg-Landau equation for the free energy 

density .  If F^  denotes the total free energy of the 

quadratic terms, nhen the partition function can be written 

Because F^   is a diagonal quadratic form in wavenumber space, 

It does not induce any cross-correlations.  Thus, to first 

order In b we can calculate correlation functions just as before, 

except that we must introduce, within the expectation values, a 

factor 
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-^^---|^>w*- (2) 

Proceeding In this nplrlt we will exaalne the effect of 

the above factor on the critical shear viscosity, which by 

Eq. (30) of Chap. II can be written as 

(3) 

If we insert Eq. (2) into the equal time value ^j^o^ of 

the time Integrand in Eq. (3) then we obtain a term proportional 

to 

^^^'■<,l)AV^6')<,^|1><lsf?''><,s'-l'><lV'>' <4) 

which conveniently splits up into the product of two sums, one 

over wavenumber £, and one over wavenumber i'.  However, because 

"q" is taken to be along the z-axis both sums turn out to be 

antisymmetric in the x-directlon and as a result are zero as 

shown below: 

o 

(5) 

(6) 

69 

a^üüBttaaaaiMattiMfiüüMM 



NOLTR 72-208 

Thus we see that from the standpoint of static perturbation 

theory, the decoupling approximation entering Into critical 

shear viscosity Is justified.  It Is worth noting that the 

decoupling approximation Is valid to all orders of static 

perturbation theory, because to all orders the double sum In 

Sq. (4) will be split Into a product of two sums, leading to 

the zero result of Eqs. (5) and (6). 

Unfortunately, the above result does not show up in the 

calculation of the critical bulk viscosity.  The bulk vis- 

cosity C is proportional to the space-time integral of the 

correlation function of the trace of the stress tensor 

If we employ the canonical formalism of Chap. II, then it is 

easy to see that the trace of the stress tensor has a term 

proportional to the square of the order parameter.  Thus to 

calculate the temperature dependence of the hydtodynamic 

bulk viscosity it is necessary to cope with a term of the form 

to 

where   f( |£j,j£'j)   has   no   angular  dependence,   depending   only  on 

the  magnitudes   of   the wavenumbers   £  and   £'.     We  see   that  we  no 

longer  have  any  angular  dependence   in   the   integral   to   save  us, 

as   In   ehe  case of   the  shear  viscosity.     When we  substitute 

Eq.   (2)   into   (7),   we  find   that   the  equal   time  value  of   the 

integrand   in  Eq.   (7)   becomes  proportional   to 

-T^IZlf(<^,ii?0<'/5r/J>\lSrli>i 
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In other words, the equal tine value of the Integrand Is 

■ultlplied by the product of two correlation functions.  It 

Is easy to estlaate the relative values of Eqs. (8) and (7) 

by replacing all factors of wavenumber by C  > and the volume 

3 
fl by £ ; In this manner, we find that 

(i) (9) 

where ^  Is the characteristic length defined in Chap. I, as 

e, - (b^r (10) 

and £ (K) is the zero frequency and wavenumber value of the 

critical viscosity using the decoupling approximation in 

Eq. (7), and A£(K) is Che value obtained from Eq. (8).  There- 

fore, as the critical point is approached the accuracy of 

mean field theory becomes considerably diminished.  In fact, 

each order of perturbation theory will predict a larger 

divergence, so that mean field theory is obviously not applicable 

to the bulk viscosity. 

B.  Time Dependent Perturbation Theory 

To formulate the principles of time dependent perturbation 

theory it Is necessary to consider relevant non-linear terms 

in the hydrodynamic equations, and how they effect the decay 
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of concentration and velocity modes.  We will only consider 

hov a concentration and velocity mode yield another concen- 

tration mode, and how two concentration modes yield a 

velocity mode.  These vertices are characterized by 

r5 s 
(Ha) 

and 

(lib) 

The vertex (11a) Is easily derived by considering the 

convectlve term V*(sv) as a perturbation to the time rate of 

change of the concentration fluctuation.  In wavenumber space 

the hydrodynamlc equation Is 

(ii * rr) V0 = " n^Jf V05r-(t)'     (12) 

where we treat the right hand side as a perturbation.  We can 

think of the zcroth order value s-i. (t) as the solution to 
q 

the homogeneous equation, and s-^ ^(t) as the first iteration 

of Eq. (12), that is for t>o: 

anc" 

t 

f^-w-lk^   ^H'^ ■ (14) 
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To derive the vertex (lib), we must consider the 

canonical form of the stress tensor.  If TCr",t) Is the part 

of the stress tensor at space time point (f,t) due to con- 

centration fluctuations, then we can write the hydrodynamlc 

equation for the transverse velocity as follows: 

fi^v'cr^)-^ fcn-t) - V'Tcrt), (15) 

where In Chapter II we showed that 

and 

(16) 

with 

fe-/ 

9s   .-> . 

(17) 

(18) 

In Eq. (17) we neglect fourth order terms, and also assume 

that y«o.  Then 

•J 

and 

^ A^LK^ivJ  . 

IM = ¥'^ *s^ J-a^ - ^2 ",s* ^j 
so   that 

V-T    =     -^-(\75 - K s) V5   ^ 

(19) 

(20) 

(21) 
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vhere 

'/a. 
K=  (O-Z)  . (22) 

Transforming to wavenunber space, we find that the q 
-» ••• 

component of V* 3* is 

Since we are only dealing with transverse velocity components. 

It is necessary to subtract out the longitudinal components, 

that is the components of (V*T)  along the direction of the 

wavevector q", so that 

^r m^-f^-X)^^- (24) 

Using Eqs. (15) and (24) we can write the hydrodynamlc equation 

for the transverse velocity modes as 

The solution to the homogeneous equation is just 
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vpo^'-W^   , <"> 

for t>o, and the first iteration is 

7fci)» ^ Zcr- f f X t - ^,) 

Having evaluated the vertices (11a) and (lib) we are 

in a position to examine the vertex corrections to the 

critical Rayleigh llnewidth and shear viscosity. 

C.  Vertex Corrections 

To examine the wavenumber and frequency dependence of 

the critical Rayleigh llnewidth, we write the fluctuation 

dissipation formula 

where 

T* 

f^o=^ivorvr-^J > (29) 

so   that 

^>-^z^^Vv^r^oVoxr)-^^3 >.   (30) 
Thus we must correlate a concentration and a velocity mode 

at time t with a concentration and velocity mode at time 0, 

as shown below: 
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<c !>t (31) 

Just connecting the lines to form the bubble 

(32) 

14 corresponds to the decoupling mode approximation of Ferrell  , 

13 discussed in Chapter III, Section B, and yields the Kawasaki 

result. 

To calculate the vertex correction we trace back the 

velocity mode at time t and presume it was caused by two con- 

centration modes, and trace back the concentration mode at 

time t and presume it was caused by a velocity and a concentra- 

tion mode.  We will also assume that the concentration mode 

was formed first, so that the intermediate state consists of 

three concentration modes, and no velocity modes, otherwise 

we obtain a correction of a smaller order of magnitude, as we 

will later show.  Therefore, we need to calculate the following 

diagram: 

t   >'t (33) 

We Insert Eqs. (14) and (27) into (30) and obtain 

CW- 
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To evaluate the above equation we take the coupling of the 

concentration modes shown by the lines above the equation 

and double It, since by symmetry It must give a contribution 

equal to the coupling denoted by the lines underneath the 

equation.  Therefore, we presume that as far as Eq. (34) is 

concerned 

2 -r.,<t'-t')-/?,rr,t' 

r;-r ^-r-r*r   ' (35) 

and 

"T6 V-fvr-*-' • (36> 

Note that 

^-"^S^^SS/i^p^ri - 
The time Integrals then become 
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Ä^/^e-^-#-)'rt%v-^"rV/V'"'V'^''" 
-ic^r-yt' 

K g 

■ßä-r)J^^mt'%-t')elM' r*'r'" rr^u'-V) 

- l-Uc~ f f «•/ J"T-^ ^''^,^ J '[-'W /-1^'rt'J '   (38) 

In the above Integrals -« neglected concentration decay rates 

with respect to velocity decay rates.  Therefore, if there 

had been any velocity modes propagating in the intermediate 

interval, then all thrje frequency denominators would contain 

velocity decay rates, end since the velocity decay rate is 

pxoportlonal to the square of the wavenumber, while the concen- 

tration decay rate is proportional to the cube of the wavenumber, 

the sum in Eq. (3A) would have an extra wavenumber factor, 

thus reducing the order of magnitude.  If we substitute Eqs. 

(35)-(38) into (3A) , we obtain 
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There 1? another cootributlon to the vertex correction. 

It is derived by tracing back Che velocity node at time t, 

and assuming It was formed by two concentration modes at time t', 

and further assuming that one of the concentration modes was 

formed by a concentretlou and a velocity mode at time t".  That 

Is, If 

then we split up one of the concentration modes at t': 

If we substitute Eqs. (40) and (41) Into (30) we obtain 

(40) 

(^1) 

A.^v^^'-i^^^^p^,,^) 
I t 
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c&r) 'fL..l,r^tV 
' (46) 

Therefore the total vertex correction to the decay rate of the 

concentration modes Is given by 

I 0 

I-™ tt^fyr-rfl-'"' j-^l-yj''. (47) 

21 The above result Is the same as that found by Kawasaki  . 

According to him the above amounts only to a 2.4% correction 

if q>>K, and 0.4% if q<<K, both in the zero frequency limit. 

Actually, it is fairly simple to see that the vertex correction 

to the Rayleigh linewldth '.s very small compared to the zeroth 

order value 

r^^l^ii-^^M'. p^r   *i 
(48) 

because we can write 

Preceding page blank 
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where we have nultiplied the integrand of Eq. (48) by the 

correction function V jJjä),  which by Eq. (47) Is given by 

i. 
(50) 

V— ^(w) Is a completely dimenslonless quantity.  It Is also 

not very difficult to see that it is very small for all 

ranges of k and q.  If we examine the integrand we see that 

it varies as k/i  if il>>k, in both the very small and very 

large region of q.  If %   is very small, then the integrand 

varies as the inverse cube of the greater of q and k.  If £ 

and k have the same magnitude or the same direction, the inte- 

grand is zero.  As a result we expect ?_► (u) to be of smaller 

order of magnitude than V^L    (w) , although it has essentially 

the same wavenumber and frequency dependence. 

We can use the same techniques to examine the vertex cor- 

rections to the critical shear viscosity.  By Eq. (30) of 

Chap. II, the critical part of the shear viscosity can be 

written as 
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Here we have two concentration aodes at tiae t correlated with 

trfo concentration modes at time U, as shown below 

(52) 

Joining the lines to form the bubble 

(53) 

corresponds to the decoupled mode approximation of Chapter II. 

We will examine the vertex correction caused by a velocity 

mode propagating in an intermediate state, as Illustrated by 

the diagram: 

(5^) 

To calculate the above diagram, we assume that bcth concentra- 

tion modes at time t were produced by a concentration and 

velocity mode at some previous time.  Therafore, we let 

(55) 

and 

* ..M^-V 
st^>*-ip.L\*i'*r' v^-r>V*--n'      <56, 

and substitute into Eq. (51) to obtain the vertex correction 
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- - jhelLl^tärtim*>- T^g*^ 
r trr* 

{^UM'f'i^ 
(57) 

Using the decoupling approximation, and setting q along the 

z-a -'s as In Chapter II, we obtain 

r r 

"[-iw^*/?^] [-i«J*-4r(r^/J [-itthVf + Vpr,]    . (58) 

Recalling that tha uncorrected critical shear viscosity can 

be written as 

we rewrite Eq. (58) in the form of Eq. (59) with a vertex 

factor in the summand as we did with the Rayleigh linewidth, 

as follows: 

(60) 

where W_-.»(ü)) is the dimensionless; quantity given by 
q ,k 
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x ytcfe-) - —^~^i J[-^ * ftsr- r/j. (öD 

Because of the proliferation of angular factors we expect 

that the above tern should be very small, although, it may 

Introduce a ln(k_/q) term, since it is necessary to cut off 

the integration over i  in order to insure convergence.  As 

in the case of the critical Rayleigh llnewidth, the vertex 

correction to the shear viscosity has essentially the same wave- 

number and frequency dependence as the uncorrected value, but 

reduced greatly enough, so that its effect is negligible. 

In this chapter, we have justified the use of the de- 

coupling approximation for the shear viscosity and diffusion 

coefficient.  We have found that static perturbation theory 

has absolutely no effect on the critical shear viscosity, 

even though it produces a divergent series for the bulk viscos- 

ity.  After formulating the relevant techniques for time 

dependent perturbation theory, we examined the effect of 

vertex corrections on the shear viscosity and Rayleigh llnewidth, 

and showed it to be negligible. 
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V.  CONCLUSION 

A.  Summary and Discussion 

The fluctuatlon>dlsslpatlon theorem was a very useful 

tool in obtaining the results of this paper.  It related trans- 

port coefficients, quantities which are proportional to the 

dissipation rate of fluctuating internal modes of the system, 

to the correlation function of the strengths of those fluctua- 

tions.  It is intuitively clear that since a fluctuation of 

any internal quantity is a deviation from the equilibrium con- 

figuration of the system, the stability criterion, or the 

principle of minimization of free energy, demands a return to 

equilibrium.  Therefore, the larger the fluctuation, the 

greater the restoring force.  One manifestation of the fluctua- 

8 9 24 
tlon dissipation theorem Is the Kubo formula ' '  , which 

equates the transport coefficient to the time and space Integral 

of the correlation function of the relevant flux.  In both the 

shear viscosity and diffusion coefficient, the flux was found 

to be the second order product of two fluctuating quantities. 

Therefore, in the calculation of the correlation functions it 

14 was necessary to use a decoupling, or factoring, approximation  , 

which transformed a correlation function involving four fluctua- 

ting quantities into the product of two correlation functions, 

each involving two fluctuating quantities.  The explicit 

equations for tne correlation functions were derived from mean 

field theory and linear hydrodynamics. 
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14 These methods were first used by Ferrell   1c calculating 

the critical temperature dependence c£ the diffusion coeffx- 

13 cient.  He verified the result of Fawasakl  , namely 

D- !>, (1) 

where 

JU   ^ (t-^ 5 ) (2) 

is Stokes* formula for the mobility of a sphere of radius ^ 

moving through a liquid of viscosity r|>  This result suggests 

an intuitive picture of the phase transition, as consisting 

of a binary liquid with regions of large concentrations of 

solute.  These regions can be thought of as rigid spheres 

having radii equal to the correlation length.  As the critical 

temperature is approached, the correlation length grows; that 

Is the size of the inhomogeneitles grows larger, corresponding 

to a decrease in the mobility of these regions, thus accounting 

for the sluggishness of the system, and its lack of haste in 

returning to equilibrium.  When the correlation length grows 

larger than the wavelength of the concentration fluctuations, 

i.e. when q>>5  t the above formulae are no longer valid, 

because D becomes a function of q corresponding to "non local" 

diffusion.  This change Is carried out by the substitution 

n      > (3) 
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where a Is sone nuaerlcal constant of the order of unity. 

18 19 Eq. (3) illustrates the principle of dynamical scaling  *  , 

that all temperature dependence be expressed in terms of the 

correlation length C> and as T-»-T all factors of £ be replaced 

by the wavelength of the fluctuations.  In the case of the 

diffusion coefficient a « 3ir/8, so that in the limit T-KT we 

obtain 

All of the above equations assume a constant value of 

the shear viscosity.  However, recent experiments have clearly 

established a critical temperature dependence In the hydro- 

dynamic shear viscosity n-  It was the purpose of this paper 

to theoretically derive the temperature, wavenumber, and 

frequency dependence of the excess shear viscosity, and deter- 

mine how it affects the critical diffusion in coefficient. 

In other words, what value of n should be used in Eq. (4)? 

A Kubo type formula relating the shear viscosity to the 

correlation function of the off-diagonal component of the 

stress tensor  was employed.  A canonical formalism identify- 

ing the Glnzburg-Landau free energy density with a Lagranglan 

density established that the off-diagonal component of the 

stress tensor due to concentration fluctuations Is proportional 

to the product of two orthogonal components of the gradient 

of the concentration.  To evaluate the correlation function. 
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it was necessary to employ a decoupling approximation, whose 

validity was later confirmed by perturbation theory.  The 

rest of the calculation was rather straightforward and pro- 

duced a logarithmic temperature divergence' .  By the princi- 

ple of dynamical scaling a logarithmic wavenumber and frequency 

dependence was predicted and actually calculated, and for the 

shear viscosity the factor a in Eq. (3) was found to be .497, 

25 confirming the general rule of thumb  , that when factoriza- 

tion introduces the correlation length twice (via the equal 

time correlation function) , a is close to -z. 

The above scaling factor Is not directly valid In the 

diffusion problem because it is only applicable In the static 

limit.  Therefore, it is not correct to blindly insert the 

wavenumber dependent viscosity into Eq. (4) in determining 

the critical Rayleigh llnewidth.  The diffusion process 

depends upon the relaxation of current fluctuations, which are 

the product of concentration and velocity fluctuations.  The 

finite concentration relaxation rate forces us to study the 

viscous damping of velocity fluctuations at non-zero frequen- 

cies.  This results in a kind of "retardation" correction to 

the effective critical viscosity used in the calculation of 

the critical diffusion coefficient.  It is manifested by the 

increase in the scaling constant a r, to be used In the shear err 

viscosity  which  is   to  be Inserted   Into   Eq.   (4).     The   result   is 

-((33-(25) -c\o8 , 

%(   -e -e "    O-''2- (5) 
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The self-consistent nature of the viscoaity and diffusion 

was then studied.  It was found that the product of the 

diffusion coefficient and excess shear viscosity should have 

the sane temperature behavior as the Inverse of the correlation 

length.  Making use of the fact that the characteristic fre- 

quency associated with viscous damping Is much larger than 

the characteristic frequency associated with diffusion. It 

was deduced that the critical shear viscosity cannot have a 

2122 temperature divergence more drastic than a logarithmic one 

The self-consistency was then applied to other fluids, namely 

the gas, and the superfluid. 

Finally, we applied the results of perturbation theory to 

test the reliability of the previous results on the critical 

shear viscosity and diffusion coefficients.  The fourth order 

term of the Glnzburg-Landau equation serves as the perturbation 

in the static case; it is found to have no effect on the   shear 

viscosity, even though it produces a divergent perturbation 

series in the case of the bulk viscosity.  Non-lin^sr hydro- 

dynamics serves as the basis for time dependent perturbation 

theory, which was used to study the effect of vertex corrections 

on the critical diffusion and shear viscosity.  Although, the 

vertex corrections had similar temperature, wavenumber and 

frequency behavior as the uncorrected quantities, their sizes 

were diminished by at least an order of magnitude. 
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B.  Areas of Further Study 

At first glance, it seems that the techniques developed 

here would be suitable for studying the critical bulk viscos- 

ity and sound attenuation in the binary liquid phase transi- 

tion.  Unfortunately, it is difficult to treat the correlation 

function of four concentration fluctuations because of the 

failure of the decoupling approximation.  Therefore, it will 

be important to learn how to treat higher order correlation 

functions, and apply the results to the bulk viscosity. 

A more promising area of research is the non-Lorentzian 

behavior of the frequency spectrum of the concentration modes. 

This behavior will be manifested in the frequency dependence 

of the diffusion coefficient.  The most Important contribution 

to the frequency dependence will probably arise from the fre- 

quency dependence of the excess shear viscosity, which we have 

already derived here. 
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APPENDIX 

In this appendix, the cuaputer programs that were used 

for numerical calculations are presented.  They were run on 

the INTERCOM system of the CDC 6400 computer at the U.S. Naval 

Ordnance Laboratory. 

Program FLV283 determined the value of the viscosity 

scaling function at zero frequency, given by Eq. (109) in 

Chap. II. 

Program SLP283 determined the initial slope (minus 1/3) 

of the viscosity scaling function, given by Eq. (110) in 

Chap. II. 

Program SCL283 was used to plot the viscosity scaling 

function for various values of P, given by Eq, (100) in 

Chap. II.  Simpson's Rule was used in the numerical integration. 

Program DIF283 was used to plot $($)- $(({>) for various <j>. 

♦ (<j>) Is defined by Eq. (59) and $(#) by Eq. (77) of Chap. III. 

This program used the results of SCL283, and employed linear 

Interpolation to calculate intermediate values of the scaling 

function.  By integrating #(<!))-$(<))) by Simpson's Rule, the 

program was able to calculate C-. . 
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LIST 

FI.V2S3 13-41.J*.   03/01/n 
10 F«6R«N  FLVeSJ UNHiT.BUTPMTJ 
CO *T*K«m   •   .i»*U86<f I.♦»>/««•-*»> 
so mtx) • i. - XM 
40  6J1CX>   •   9«X>*CX*ATMWn</X>->.) 
so ec<x> • t. • x»s/3. 
60  S83iX>   •   sei)TO.>/X 
70  SJECXi   •   6C«X>»«l.->ÄT*#««Se3fK))/S83«X)> 
• 0 F(X>   •  -<>S'/<8.*X>>*C«H<X>*(3JH»)»6Je<X3>«(S>/lS.)) 
»0  6(A>  •  r«T«"C*5>/C»S«*)««8 
100 NS «  so 
iOS PI   •  3.14f5»8*53« 
1 10 H •   .i>VFI,»ATC«8> 
I SO N •  Me/8 
(30 NS   -  » -   J 
I4C PRINT 40 
150 Al  •   .85 ♦  K 
160  81   •   S<rl**l> 
170 PRiaT 50»   Al. 61 
ISO  £ «   4.*ei   •   2. 
190 D»  SO 1   •   I.   «I 
800 Ai • .£5 « H*n.eAT(e«n 
810 6:   -  6<PI0A1) 
880  'RINT  SO.   Al.   61 
8 30 AS ■  Al   * H 
8 40 62 «  G<AS*PI) 
8 50 PhlWT  50.   AC.68 
860 S •  8.»61  ♦   4.*68 ♦  S 
870  20  CtNTINUE 
300   S •   PI*H*S/3< 
310  PRINT  60.   H.S 
360   40  FeR»IAT(/18X,»Ai». HX.»6<A>»/J 
330   50  fBRHAT<5X.FI0.3. I0X.E15.8) 
340   60  P»R«ATt/«   WITH   H   ■   ».FlO.a.*.   C   ■   ».£15.8) 
3 SO ST»P 
3 60 END 

A G(A> 

• 855 
.860 
.265 
.870 
.875 
.280 
.885 
.850 
.295 
.300 
.305 
.310 
.315 
.320 
.325 
.330 
.335 
.340 
-345 
.350 
.355 
.360 
.365 
.370 
.375 
.380 
.385 
.390 
.39 5 
.400 
.4C5 
• 410 
.415 
.480 
.485 
.430 
.435 
.440 
.445 
.450 
.455 
.460 
.465 
.470 
.475 
.480 
.485 
• 490 
.495 

■.ie^3880E*0I 
•.!80188 52E*01 
■.!72n608E»0l 
■• I6491373^»01 
•• I5823742E*0I 
■• IS803807E+01 
■•I4683735E«01 
•.|4077605E*01 
•.I3560775E+01 
-.1306950SE*01 
■•t2600709E4'OI 
••!21S1800E*01 
•.ll720574r*01 
••11305I33E+0I 
•.10903820E'»Oi 
•.10515I81E+01 
■•I0137986E*01 
-.97709 037E*00 
•.S4130838E+00 
•.9063S336E+00 
■•872I4120E*00 
■.838 59 527E»00 
-•8CS64576£*00 
■.77328392E*00 
•.74128645E*00 
•.70976492E+00 
-.678 61542E*00 
■•64779314E*00 
••6I7E5708E*00 
••5869 69 79E*00 
■.55689717E*00 
>.58700820^*00 
-.49 72748 ÖE" 00 
••46767I92E*00 
••438I7680E«00 
••403769 48E*00 
■.379 43233E»00 
••35015001E*00 
-•32090933E*00 
■•89I699I7E«00 
■•8685I028E*OC 
•.83333521E*00 
-•804I6813E*00 
■• 17500467E4 00 
-.1458 418 IE*00 
•.1I667763E*00 
■•875II183E-0I 
-.583358 50E-0I 
■•88657789E-0I 

UITH H   • 
1 3^39^80>SnP 
»»REAPY^ 

• 005.   C •     -•63860654E*00 
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SLP283 14.44.56.   04/12/72 
10   PROGRAM   SLP28 3UNPUT#OUTPUT) 
15   DIMENSION   G(50) 
20   DATA   PI*   S3/3.1415926536*    1.7320508076/ 
30  HYP<X)   =   O.5*AL0GC(1.+X>/{1.-X))/X 
40   CIR<X)   =   (PI/2.-ATAN<i./CS3*X)>)/<S3*X) 
50   FH(X)   =   1.   -   X*X 
60   FC<X)   =    1.   ♦   3.*X*X 
70   BRKX)   =   FH<X)*(HYPCX)-CIRCX))/(16.*X*X) 
80   BR2CX)   =   tFCCX>*CIR<X)-l.)/(24.*X*X) 
90   FCX)   =   7.5*FH(X)*CEF1(X)-PF2<XU 
100   PRINT   100 
1 10  N   =   20 
120 D0   10   I   =   1*^ 
130 Y   =   FL3AT(I)/FL3ATCN) 
140 G<I)   =   F(Y) 
150 PRINT   110*   Y*   GCI) 
160 10   CONTINUE 
170 100   F0RMATC15X**X**14X**F(X)*) 
180 110   F0F.MAT{2(1OX*F1O.5)) 
190 S  =   4.*G(1) 
200 Nl   =   N/2   -    1 
2 10 DO   20   J   =    1*N1 
220   S  =   2.*G(2*J) + 4.*G(2*J+1) + S 
230   20   CONTINUE 
240  XINT  =   (£+G(N))/(3.*FL3ATCN)) 
250   PRINT   120*   XINT 
260   120   F3FMAT(/5X**INTEGFAL   0F   F(X)   =   **F10< 

2 70   ST3P 
280   END 
♦♦READY. 
FF-TN 

5) 

SLP283 14 .46.55. 
X 
.0500C 
.10000 
. 15000 
.20000 
.25000 
.300CC 
.35000 
.AOOQC 
.45000 
.50000 
.55000 
.60000 
.65000 
.70000 
.7 5000 
.8 0000 
.8 5000 
.90000 
.9 5000 

1.00000 

04/12/72 
FCX) 

-.00248 
-.009 69 
-.02099 
-.03540 
-.05178 
-.06895 
-.03 5 77 
-.10125 
-.11458 
-.12512 
-.13236 
-.13595 
-.13561 
-.una 
-.1P231 
-. 10895 
-.09075 
-.0 6729 
-.03774 
0.00000 

INTEGRAL  0F 
1 4.47. 13.ST3F 
♦♦READY. 

FCX) -.079 08 
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SCLBSS 14.41.3«.   ovie/Te 
10 PMGMM  SCLMa  (INPUT.tUTPUT) 
eo AT*NH(r> • o.s*M.t8c(i.*r>/(i.-y)> 
30 SHCX) • i. • x*x 
40   6J|<X>   •   6H(X>*<X*AT*NH(|./X>-|.> 
SO A(X.P)   •  MRT(X*X*X*P> 
60  B(X>   •   S«RTO.«X> 
TO  GC(X.P>   «I.   *   ;A(X>P>/B(X)>*oe 
80  Cje(X<P)   •   GCCX.P>*(I.-(«CX>P>/B<X>>*ATAN<B<X><'A(X.P))> 
• o ocx«»') • A(x.p)**e * (X*B<X)>*«8 

3 00  BRC<X.P)«6H<X)»<GJIfXJ»6J8(X,P))»e.»DCX.P)/CIS.»A«X.P)»»e> 
no r<x.pj • -7.5*X*X*BRC(X>P>/O(X>P> 

leo 6CT»P) ■ r(TAM(T>>p>/cas(T>**c 
130 NS •   50 
t 40  PI   •   3.I4IS9S6S36 
tso H « .es/n.iAT(Ne; 
IM N > Ne/e 
176 N»     «     I»  -   I 
ISO  PRINT   100 
«to 08  30 I  •   1.50 
eoo p • io.*»(<i-eo.>/jo.» 
CIO Ti   •   .25 ♦  H 
eeo 6i • G«PI»TWP> 
£30  S •   4.*GI   -8./< i.*P) 
e40 oa eo j • I.NI 

250 TI • .es * H*n.0AT(e«j) 
260 Gl   '   G(PI»T1.P> 
2 70 re • .zs ♦ H*n.0AT<e*j*i> 
280 62 •   GCPI«T2<P} 
290 S  •   2.*Si   ♦   4.*G2  *   S 
30C 20  CBNTINUE 
310 SIG •  PI»H«S/a. 
320 PRINT   110.   P.   SIG 
330 30  C8NTINUE 
340 loo F3RMATe/eox.«p».eax.»siG(P)*/) 
350   110   F0RHAT(£( 10X.EIS.8>> 
360  STBP 
370  END 
«•READY. 

F SIGCP) 

•I25g9?54E-0I 
.158 48932E-01 
.199S2623E-01 
•SSII8864E-0I 
.3162P777E-01 
.39810717E-01 
.501 187e3E-01 
•63095734E-01 
.79432883E-01 
.10000000E*00 
•ie589£S4E*nO 
.lS84893eE*00 
.l»952«e3E*C0 
.251!8B64E*00 
•31622777E*0Ü 
.398I0717E+00 
.501l87e3E*00 
.6309573<E*00 
.79432823E*00 
•10000000E*01 
.12S89254E*01 
. 158 489 32E+01 
.1»952623E*0I 
•SSI18C64E+0I 
.31«22777£*0I 
.39810717E»0I 
.50ll87e3E*0) 
.63095734E+01 
.79432g23E»01 
.10000000E*02 
.I2589254E»0£ 
. 158 48932E+02 
.!9952«23E*02 
.25118864E*0e 
.31622777E*02 
.398107I7E+02 
.50!l8723E*0e 
.63095734E*Oe 
.79i>32883E*02 
.10000000E*03 
.I2S8925<E*03 
. 158 48932E*03 
. I9952623E + 03 
.251I8840E*03 
.3I622777E*03 
.39810717E+03 
.50118723E*03 
.«'09c.7n4E*»;3 
.79432e2:E*03 
.10000000E+04 

I 4.39.41.578? 
««READY. 
LIST 

-.629 425 i8E+00 
-.62861* 1E*00 
-.627593 7E*00 
-.626314,OE+00 
-• 62471 5e2E*00 
-.62272CI7E*00 
-.62023444E»00 
-.6I714676E+00 
-.61332375E*00 
-.608 60916E*00 
-.60282379E*00 
-.59576<.15E*00 
-.5872r;7bt^00 
-.57695128~*0Ü 
-.56474323E*00 
-. 55039 3C5E-»00 
-.53374S07E*00 
-.51471358E»00 
-.49330666E+00 
-.4096434IE*00 
-.4JI39 6236E+00 
-.4166M44E+00 
-.38804418E*00 
-.35875678";:*00 
.32928187Et00 

-.30013327E+00 
-.27I77696E+00 
-.o^460628E+00 
-.2;892826E*00 
-.194959S0E*00 
-. I7283178E*00 
-.I 526008!E»00 
-. 13426075E1-00 
-.I I775693E + 00 
-.I0300045E*00 
-.89R78<08E-0! 
-.7g26544SE-01 
-.680?96SSE-0i 
-.590;9367E-0! 
-.51S66S99E-01 
-.4*290852E-01 
-.38298733E-01 
-•3.108 6989E-01 
-.2856M12E-01 
-.e«637326E-0I 
-.2123921IE-01 
-.18299635E-01 
-.1S7S9I54»-C1 
-.135655C4E-01 
-.1167257eE-01 
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Direaa       17.31.go. 03/13/w 
10 mf x(ioo>. ycioo>> s«(ioo> 
80 Lrr N • si 
30 «R   I   •   I   TB  N 
40 MEAD  X(I>.   Yd) 
50 NEXT   I 
«0 LET   PI   •   3. I41S»P6536 
70 PPINT 
80 PRINT   "ANO-EfPAD/Pl»".      INTEGPANU" 
90 PRINT 
95 LET  L   «  0 
96 LET   P4   n  LeE(P|/«»> 
97 LET   S4<0)   «  -4.»«.eB59-.7I41»P4.P4tg)/FI tS 
98 PRINT L.   S4(0> 
100 E3R f « 0.01   TB O.SO STEP 0.01 
102 LET  L   « L   ♦   1 
104 IF L   >  ?S   00   TO  830 
10« IE L   «   SO   00   T8   840 
III LET  *   .  f*   PI 
180 LET  XO «   4»<TAN(*>lt3 
130 68SÜ8  650 
140 LET  T!   »  CBS«*')   ♦  SIN<A) 
ISO LET  T8  = *SS<C85(«)-S1N(A)J 
16" LET  T3  «  ASS<T*N{*»0.P5*P!)) 
165 LET  T4  « APSfC8S{8.*A)> 
170 LET  Jl   «   P.«<LBGCT3)   -   SINfP.*A5) 
180 LET J8  »  LaG(T8>tCH.8nCTl)»P»SIM<8.»A)»LaC<T4) 
190 LET   D   =   SIN<A)»CflSCA)»3 
POO LET  LI   =   CBS<A>f3   ♦   4.»SIN(A)f3 
PIO LET  SI   «   J1*(YO-(1/'3)»L0F<L1)>   -   J? 
880 LET   S8   •   Sl/(D»Plt8) 
P8? LET   T5  •   LBGfABS(A-.8S»Pl)) 
885 LET  S3   •   i.»C.?R59-. 71 41 *T5-T5*T5)/PI 18 
PP7 LET  S4<L>   «   S8   -   S3 
888 C0   TB   P50 
830 LET   ?4(L)   *   0.0 
835 TO   TB   850 
840 LET   S4<L>   =   8.*?4(L-1)   -   S4(L-?) 
P45 03   TB   "iO 
P50 PRINT  ft   S4(L> 
860 NEXT   f 
870 LET   C   »   S4(0)   *   4.»54(1) 
880 EBR   J  »   I   TB   (L-8)/P 
890 LET   C   «  8.»S4(8»J)   ♦   4.»54(P*J»1)   ♦   c 
300 NEXT  J 
310 LET  C   «   .Ot*Pl*(OS4(L))/3.   -   i'.R71f 
380 PRINT   "CaAI-EOA)   •  "C 
350 STBP 
650 IE   XO   »«  X(l)   08   TB   690 
660 LET   P   «   (XO-X(l)?/{X<p>-y(|)> 
670 LET   YO   •   C1-P)»Y(1)   ♦   P»Y(?) 
6R0 G0   T0   760 
690 E0R   K   «   ?   TB   M 
695 IE   XO   >■   X(K)    GP   TO   740 
710 LET   P   •   f»P-X(K-l)>/(X(K)-XfK-l)) 
780 LET   YO   »   (1-P)«Y(K-1)   ♦   P*Y<K) 
730 GB   TB   760 
740 NEXT   K 
750 LET   YO   «   - .98r",R*X0t (-. 64?) 
7*0 PFTUPN 
800 DATA   0.0.    -.63P6 
BOS PATA   .01PS9.-.fP94,.pl sss,-.A?R6. .0|9V!>.-.6876 
PIO DATA   .0P51?.-.f?63..r316?,-.fP47, .039f'l.-.fP?7 
PIS OATA   .C50IP.-.f?PP, .06310.-.61 71 . .07943,-. 61 J3 
BPO DATA   0.10.    -.f-Ct 
HPS DATA   .18>9.-.60PR.. ; 5K5.-.S9SR, . 1995... 5«7? 
830 DATA   .851?.-.5770. .31 6P,-.5647. .39fl|.-. S^f i 
P3S OATA   .501P.-.5337..6310,-. M 47. .79/13.-.49?T 
840 DATA   I .00.    -.4696 
845 DATA   I .858».-.4440, I . 5K49.-. 416f . 1 .oasr'.-.SI'Kr 
850 DATA   P.5119.-.3SB8.3.16?3,-.3?«3.3.98l1.    .30r1 
855 DATA   5.01 19.-.2718. 6.3096.-.8446. 7.9433.-.8189 
860 DATA   10.000.   -.1950 
865 DATA   1 P. 589.-. 1 7?«. 1'-. B 49,-. I 5?6. 19 .9 53.-. 1 ?'? 
H70 PATA   85.119.-.1178.31.6^3,-.10^0,39.«!1.-.0S9PH 
B75 DATA   SO. 1 19.-. 07BP7, 6? . r>)6. - .r.'.>1P3. 79 . 433,-. 0^904 
880 PATA    100.000.    -.0M!7 
KfS PATft   185.89.-.n44?4, ! sv:, ^y,-.fTM^r, 1 g9. S3,-,033rt'" 
K9P ncT^  psi. 19.-.pp^Sf. m 6.P3.-.n?4>.4, 3'IM . i!. • .n?iP4 
«95 PATA   SOI .19.-.Plf.31:!.'3r.96,-.Pl S76.70/..33.-.fl'.l 67 
90P PAT»   inoo.P.   -.nil 67 
999 rwr 
•»fcrspv. 
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NOLTR   72-208 

ANGLF(RAD/PI) INTFGRAND 

0 -.162133 
.01 -.165618 
.02 -.168 486 
.03 -.170593 
,04 -.171789 
.05 -.171917 
.06 -.170812 
.07 -.168294 
.08 -.164173 
.09 -.158244 
.1 -.150283 
.11 -.140045 
.12 -.127275 
.13 -.1116C9 
.14 -9.3034fF-2 
.15 -7.10009F-2 
.16 -4.53502E-2 
.17 -1.58554F-2 
.18 .01758 
.19 5.47647F-2 
.2 9.48B46F-2 
.21 .136435 
.22 .175817 
.23 .204802 
.24 .200509 
.25 0 
.26 -.252907 
.27 -.331934 
.28 -.377598 
.29 -.407413 
.3 -.42789! 
.31 -./iil2116 
.32 -.452 43 
.33 -.459595 
.34 -.Zf4047 
.35 -.466359 
.36 -.466996 
.37 -.466243 
.38 -.464514 
.39 -.461997 
.4 -.45R6 
.41 -.45453 
.42 -.450147 
.43 -.445387 
.44 -.440381 
.45 -.43 5251 
.46 -.430174 
.47 -.42518 
.4B -.420376 
.49 -.415R82 
.5 -.411388 

CCLAKBDA)   =   - 1.24804 
♦**FADY, 
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FIG. 2 
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FIG. 5 
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FIG. 7 
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